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Under appropriate conditions fluid lipid-bilayer vesicles in aqueous solution take the form of two (or
more) compact shapes connected by a narrow neck (or necks). We study the limit (termed “vesicula-
tion”) in which the neck radius a approaches zero. On the basis of elastic equations, derived originally
by Deuling and Helfrich [J. Phys. (Paris) 37, 1335 (1976)] for a bending-energy model (the spontaneous-
curvature model), we show analytically that, at vesiculation, the local curvatures of the two regions
joined by the neck satisfy a simple, universal “kissing” (osculation) condition. Furthermore, for points
near but not at the vesiculation limit, a is small but nonzero and there is characteristic scaling behavior.
For example, in the surface tension (o) and pressure (p) variables, the vesiculation boundary is a line in
the (o,p) plane, and the quantity a Ina scales linearly with the distance (Ao,Ap) from the boundary.
These relations have been observed numerically, but no analytic discussion has previously appeared in
the literature. Results for the spontaneous-curvature model generalize easily to other (more physical)

bending-energy models.

PACS number(s): 82.70.—y, 87.22.Bt, 68.15.+¢, 68.60.Bs

I. INTRODUCTION: BUDDING AND VESICULATION,
NECKS AND MULTIPLETS

Previous theoretical work by our group [1] and others
[2-6] has shown that, under appropriate conditions, the
equilibrium configuration of a fluid vesicle of spherical
topology with fixed volume and area may take the form
of two (or more) compact bodies connected by a narrow
neck (or necks). Such shapes are, indeed, observed in the
laboratory [3,6—10]. Two generically different situations
are possible. In the first, called budding or necking, the
neck has a positive radius a and the entire shape includ-
ing the constriction satisfies a Euler equation which re-
sults from constrained minimization of the total bending
energy. In the second, called vesiculation, the neck has
become infinitesimal and the stable state corresponds to a
boundary minimum in the space of configurations. Here,
the shape of the neck is not well defined [11] (in particu-
lar, it does not satisfy a Euler equation), and the
minimum-energy configuration consists of a “multiplet”
of separate Euler shapes [1], touching one another
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tangentially (i.e., osculating) and possessing, collectively,
the required total area and volume. At particular points
in the (shape) phase diagram, changing a control parame-
ter (area, volume, spontaneous curvature, or their Legen-
dre conjugates) allows one to pass smoothly between
necked and vesiculated shapes. We call this behavior a
“kissing transition,” since it marks the boundary between
osculating and nonosculating shapes.

At first sight, it may appear surprising that necked and
vesiculated shapes can correspond to energy minima,
since curvatures in such regions are large and might be
expected to produce high bending energies. In fact, what
happens in the neck region is that one principal curvature
becomes large and positive, while the other becomes large
and negative in just such a way that the mean curvature,
which controls the bending energy, remains closely
matched to the spontaneous curvature. The contribution
of the neck region to the total energy in fact vanishes as
the neck radius goes to zero. This cancellation requires a
delicate adjustment of the vesicle shape in the neck re-
gion.

It is the purpose of this paper to study analytically
vesicle shapes at and near the kissing transition. The
kissing transition is second order, in the sense that first
derivatives of the total bending energy with respect to the
control parameters are continuous. Near the transition,
shapes involving mechanically equilibrated narrow necks
are very close in overall energy to similarly shaped multi-
plets. The mathematical mechanism for the transition is
a (nonstandard) bifurcation [12]. The Landau function
for a normal pitchfork bifurcation involves terms varying
as @* and ¢*, where @ is the order parameter. The princi-
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pal control parameter is the coefficient of the @? term,
and the transition occurs when this parameter passes
through zero. Here, the neck radius a will play the role
of the order parameter; however, the important terms in
the Landau function will be found to vary as a and a YIna,
and the principal control parameter, which measures dis-
tance from the phase transition, is the coefficient of the
linear term. Thus we shall find that the neck radius @ and
the energy splitting AE between necked and vesiculated
configurations do vary with the control parameter in a
characteristic scaling manner, but not with the usual crit-
ical exponents. Furthermore, as a —0, we shall find that
the entire neck region has a simple shape on the scale of
the small distance a. In addition, it turns out that at the
transition there is a remarkably simple relation between
the local radii of curvature at the point of contact,

1/R1+1/R2=2/ROEC0, (l)

where R, and R, are the radii of curvature at the oppo-
site sides of the point of contact (we assume that the con-
tact is axisymmetric), ¢, is the spontaneous curvature,
and R is the radius of the “Helfrich sphere,” which has
bending energy zero. The kissing condition (1) was al-
ready used in Ref. [1] to locate certain phase boundaries
[13]. It has been observed numerically in a number of
studies of vesicle shapes [1,3]. However, no analytic
proof yet appears in the literature.

We phrase the discussion in the context of the
spontaneous-curvature model, originally studied by Hel-
frich and Deuling [14,15], which attributes to the bilayer
an intrinsic preference for a state of predetermined local
mean curvature c,; however, the results are applicable to
other, more realistic bending-elasticity models of vesicle
shape. The spontaneous-curvature model is probably not
physically relevant in it simplest form and has been su-
perseded by the area-difference (A 4 ) model [3,4,16-20],
which attributes the mean curvature preference to the
difference in the number of lipid molecules in the two
leaves of the bilayer, and, most recently, by the area-
difference-elasticity (ADE) model [6,17-23], which in-
cludes the effect of lateral stress on the area difference.
The key point is that all three models are closely related
and share the same Euler equations, which express the
appropriately constrained energy minimization required
for mechanical equilibrium. Thus, in the A A model, the
parameter c, is replaced in essence by the Lagrange mul-
tiplier [3,4] which fixes the area difference; while, in the
ADE model, this Lagrange multiplier becomes self-
consistently determined [21,23]. However, with these
changes, all three models generate the same Euler (Hel-
frich) equations and, therefore, the same catalog of sta-
tionary shapes. It is convenient to do the narrow-neck
analysis for the spontaneous-curvature model, which
makes the notation simplest. The analysis is local in the
sense that it looks only at a single free-energy branch, as
that branch approaches its vesiculation threshold. In ap-
plying the results to the other models, one must only
keep in mind that the following are model specific: (a)
the meaning of the parameter ¢, and (b) the global ques-
tion of which free-energy branch provides the shape of
lowest mechanical energy.
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Finally, we remark that the analysis done here is for
the case of “exterior budding,” where the bud is outside
the parent vesicle, corresponding to the exocytotic
geometry. An identical and equivalent analysis can be
done for the case of “interior budding,” corresponding to
the endocytotic geometry.

The plan of this paper is as follows. Section II recapi-
tulates the notation and equations of Ref. [1], insofar as
they are needed here, including the energy functional and
the corresponding axisymmetric Euler equation. Section
III addresses in a heuristic way the question, “Can a
small neck be a mechanically stable, low-energy
configuration?” Although the argument here is varia-
tional, it will turn out that it captures many important
features of the full solution, including the kissing condi-
tion (1). Section IV studies perturbative development of
the axisymmetric shape equations about closed Euler
shapes. This is relevant because a small deviation € in in-
itial curvature from that of a closed shape leads to a
failure of closure at the opposite end, producing a narrow
neck. Thus the neck radius a —0, as €e—0. The calcula-
tion is carried out explicitly for perturbations of a spheri-
cal shape. Section V focuses in on the neck region and
shows that, to leading order as a —0, the shape of the
neck region is a “minimal surface,” i.e., one whose mean
curvature is everywhere zero. Corrections in powers of
the neck radius a are developed systematically. Finally,
in Sec. VI, we match the perturbative solution far from
the neck to the scaling solution near the neck to derive
the kissing condition for spherical shapes. The technique
here is related to asymptotic matching and boundary-
layer theory [24]. Section VII describes generalization to
axisymmetric but nonspherical shapes. An Appendix
contains some important details of perturbative shape
calculations near a local extremum of the radius, such as
a neck or belly.

II. FORMULATION AND NOTATION

To find the equilibrium vesicle shape for the spontane-
ous curvature model, it is necessary to minimize the Hel-
frich bending energy [14,25],

Eleey;81=7 $dAle\(r)+er(r)—co @)

at fixed surface area A and enclosed volume V. The in-
tegral is over the closed surface §. The quantities
¢;(r),i=1,2, are the local principal curvatures at the
point r of & A term involving the Gaussian curvature
has been omitted, since it is a topological invariant and
we shall deal here with shapes of fixed (spherical) topolo-
gy. In what follows, we choose length and energy scales
such that the bending rigidity « and the spontaneous cur-
vature ¢, are made equal to unity. Incorporating the
constraints in the usual way leads to the requirement that
the free-energy functional,

O[S]=E[S]—pV[S]+0 A[S], (3)

be made stationary with respect to variations of §. The
Lagrange multipliers [26] o and p are then adjusted to
achieve the desired A4 and V. Under the added restriction
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of axisymmetry [27], this leads to equations [15] for the
principal curvatures c,,(r) and ¢, (r),

dc,, 4 Cm —Cp _ r
dr r 2[1—(rc, )]
X {e,l(c,— 1) —cp1+20¢c,—p) 4)
and
dc Cpy—C
% _m 5
dr r ’ )

where r is the distance from the rotation axis. It will be
useful in the following also to introduce (see Fig. 1) an arc
length s measured from the origin and the angle © be-
tween the tangent to the shape and the normal to the
symmetry axis, so

dr dz

= —_— , 6
ds cos® sin© ©)
dz _ tan© (7)
dr ’

__sin®
Cp - r ’ (8)

and
dO _ dsin©

Cm ds dr ©)

Imagine integrating Eqgs. (4) and (5), starting at the ori-
gin with an initial curvature [28] ¢;=c,(s=0)
=c,(s =0). In general, the shape will not close; howev-
er, generically there exists a discrete set of initial curva-
ture values for which closure occurs. Suppose that ¢* is
a member of this set, so that the shape closes at some
s =s, with a final axial curvature cf=cpls=sf)
=c,(s =s/), as shown in Fig. 1. Now, when ¢, is very
close to ¢*, the integration will follow closely the curve of
Fig. 1 up to the near vicinity of the axis, where it will de-
viate to form a narrow neck, as illustrated in Fig. 2. Note
that the neck radius @ depends upon (and goes to zero
with) the small difference e=c; —c*. The two charac-

'\
(C)
N T
r
5=0 l S=Sy symmetry >
«—7—> (f=final) axis

(i=initial)

FIG. 1. Typical closed axisymmetric shape, illustrating the
definition of variables. The Helfrich equations are integrated
from the left, where the shape starts at the axis (r =s =z =0).
The equations are singular at the axis, and, to get a smooth
shape, it is necessary to start with c,, =c,=c; at s =0. If ¢; is
chosen at an appropriate initial value c;=c;*, then the shape
closes at s =s, with c,, =c,=c/.
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(a) onduloid

(b) closed shape

Y

(c) nodoid

>

FIG. 2. Typical shapes which result from integrating the
Helfrich equations when c; is near ¢;*. When c;=c*, the shape
closes as in (b). When e=c; —c¢;* >0, then integration leads to
either the onduloid (a) or the nodoid (c). When e=¢;—c¢* <0,
then (a) <> (c). Whether it is the nodoid or the onduloid which
corresponds to €>0 depends on the particular closed shape in
question.

teristic deviated shapes correspond to the two signs of €.
Of the two, Fig. 2(c) (nodoid) describes a self-intersecting
surface and is forbidden for real vesicle [29]; while Fig.
2(a) (onduloid) describes a narrow, physically acceptable
neck.

From this perspective, we can now give a generic
description of the transition: If in the case of Fig. 2(a)
further integration closes the shape, then the resulting
vesicle is necked. The fact that this necked vesicle
satisfies the Euler equation means that it is at mechanical
equilibrium; however, the equilibrium may be either lo-
cally stable or locally unstable. A locally stable state may
(or may not) correspond to a global energy minimum; a
locally unstable state cannot. (In subsequent sections, we
shall explore this question of stability in detail.) At a
fixed €70 we cannot, generically speaking, expect clo-
sure; however, by varying € we may expect to find a
closed shape at some nonzero value e=€(o,p). By vary-
ing the control parameters ¢ and p, we shall find that it is
possible to bring €(o,p) to zero. The condition €(o,p)=0
defines a boundary in the (o,p) plane [and, correspond-
ingly, in the ( 4, V) plane]. On one side of this line, there
is a closed nodoid shape; on the other side, there is a
closed onduloid shape [30]. The limiting shape at the
boundary is a multiplet (Fig. 2), which satisfies the kissing
condition (1). This kissing multiplet lies on a multiplet
free-energy sheet [1], which competes in energy with the
free-energy sheet (or sheets) corresponding to the simple
Euler shapes. On one side of the boundary, the Euler
shapes have lower energy at fixed area and volume; on
the other side, the multiplets have lower energy. Thus,
when not preempted by another lower-lying sheet, the
line €(o,p )=0 is a kissing boundary.

In what follows, we shall compute in detail from Egs.
(2), (4), and (5) the shape of the narrow neck and the way
in which the energy sheets for the Euler shape and the
multiplet intersect along the kissing boundary. First,
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however, it will be useful to present a simple variational
calculation which captures much of the physics.

III. A TOY MODEL FOR NARROW NECKS

To find approximate solutions to the variational prob-
lem (2) imagine inserting into Eq. (3) a parametrized
shape §. If & has been judiciously chosen, then variation
of the parameters can lead to a good representation of the
full solution and, therefore, to a good approximation to
the constrained minimum of Eq. (2). For example, choos-
ing for & a sphere of radius R [corresponding to
sin@=r /R in Egs. (8) and (9)] gives

O[S]=Dy(R)=27(2—R)*+47R%*c—47R’p . (10)

Making ®((R) stationary with respect to the parameter
R then leads to

By (11)

which provides, in fact, the exact equilibrium radii [1],
Ri(o,p)=[2c+1)xV (20 +1)*—8p 1/2p , (12)

for the two possible spherical solutions of Egs. (4) and (5)
compatible with given values of o and p. Note [1] that
R, (o,p) are real provided p <(20+1)*/8 and, within
this region, both are positive when p >0 and o > — 1.

To look at the problem of a narrow neck of radius a be-
tween two spheres of unequal radii R; and R,, we adopt
a trial shape [31] & (see Fig. 3) in which the two end caps
(regions I and IV) are spherical but the inner regions (II
and III) are described by [32]

R;a
r+——
’

sin@= , i=1,2, (13)

R;+a

which is chosen to fit the caps at the equators and to meet
at the center in a neck of radius a. Note that sin©(r) is
continuous at the boundaries between regions [33]. The
variational functional ®[&§] is now parametrized by the
three variables R, R,, and a. The contributions from

Region: 1 I I v

FIG. 3. Toy-model variational shape for two spheres joined
by a narrow neck. The outer regions, I and IV, are spherical
caps. The inner regions, II and III, are described by the trial
function Eq. (13).

the end-cap regions I and IV are trivial. A brief calcula-
tion for region II gives, for the volume, area, and energy,

3

ﬂ'Rl 2 2
VII(R170)= 3 [(2+3p1+2p1)E(Q1)—3p1K(q1)] )
(14)
Ay(Ry,a)=27R3(1+p,)E(q,) , (15)
and
1| 2 2
E"(Rl,a)—_’z [Rl+a —1 AII(Rl,a) ) (16)

where p;=a/R;, ¢;=V 1—p?, i =1,2, and the functions
E(q) and K (q) are complete elliptic integrals [34]. Ex-
panding the elliptic integrals for small a leads to the ex-
pressions,

i

47R
Vien(R @)= +7aR?*+0(a?) , 17

A n(Ry,a)=47R?+2maR, —maIn(a /R )+ 0(a?),

(18)
and
Eyin(Ry,a)=2m(2—R,)*+ma[R,—4/R,]
—ma%n(a/R)[(1—2/R,)?*/2]
+0(a?) . (19)

Equivalent expressions for region III+1V are obtained by
replacing R, by R,, so we may finally form the variation-
al function corresponding to the trial shape of Fig. 3,

®(R l’RZ’a )=¢0(R1 )+‘D0(R2)+C(O',p,R 1,R2)1Ta
—D(o,p,R,R,)ma’Ina+0(a?), (20
where the coefficients of the terms in a and a?Ina are

C(o,p,R|,R,)=(20+1)(R,+R,)—p(R?+R}3)

—4(1/R,+1/R,) 1)
and
D(o,p,R\,R,)=(20+1)—2 |-L +-L
Rl R2
1
yo | Ly L 22)
R} R}

and all higher-order terms have been dropped.

We now study the behavior at small neck size on the
basis of the variational function (20). Notice that, pro-
vided a is small, the stationarity conditions 3® /3R; =0
lead to values for R, and R, which differ from the solu-
tions R, (o,p) of Eq. (11) only by terms of order a. Thus,
near the stationary points, we may replace R; and R, in
Eq. (20) by R (o,p) to obtain a function ®(a) of the
neck size a alone. ®(a) plays the role of a Landau func-
tion in which a is the order parameter. Using Eqgs. (11)
and (12) to evaluate C(o,p)=C(o,p,R 4(0o,p),Rp(0,p))
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and D(o,p)=D(o,p,R 4(0,p),Rgz(0,p)), we arrive at
the Landau function,

q)AB(a):(DO(RA(a’p))+¢0(RB(07P))
+4ma(1—1/R 4—1/Ry)
—D(o,p)ma’lna+0(a?), (23)

where R 4, and R may independently be either one of the
two equilibrium sphere radii (12) [35]. Notice (Fig. 4)
that, as long a D(o,p) is positive, the Landau function
has a boundary minimum whenever (1/R ,+1/Rg) <1,
so the vesiculated state (@ =0) is variationally stable to
the formation of a small neck. Conversely, when
(1/R 4+1/Rpg)> 1, the vesiculated state is variationally
unstable to the formation of a small neck. This is just the
condition (1) mentioned in the Introduction. For
(1/R 4 +1/Rp)X 1, Eq. (23) predicts a small stable neck
having a radius given by the solution to [36]

(1/R ;+1/Ry—1)=(20 —p)(—a Ina)+Ol(a) . (24)

To proceed further, it is necessary to locate the loci (see
Fig. 5) on which the left side of Eq. (24) vanishes. There
are three cases.

(a) The quantity (1/R, +1/R _) equals unity along
the line o =7, and Eqgs. (12) and (24) predict stable necks
in the region just to the right of this line (see Fig. 5) with
radii satisfying

(c—3)=(p—1)(—alna) . (25)

(b) R (o,p)=2 along the line o =p for o >1, and
there are stable small necks in the region just to the left
of this line with radii satisfying

(p—a)=§<2p —1)—alna) . (26)
(c) R_(o,p)=2 along the line 0 =p for o <1, and
there are stable small necks in the region just to the right

of this line with radii satisfying

<a—p>=121<1—2p)<—a Ina) . 27

C>0 C<0

a a

FIG. 4. Characteristic shapes of the Landau function
(D >0). When C >0, the lowest free energy occurs at neck ra-
dius @ =0 and corresponds to a vesiculated shape. When C <0,
the lowest free energy occurs for a >0, corresponding to a
necked (budded) shape. The condition C =0, which marks the
vesiculation boundary, gives the kissing condition, Eq. (1).
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o=1/2

+1 —

(no equilibrium spheres)

-1 +1 o

FIG. 5. The (o,p) plane, showing the vesiculation boundaries
for two-sphere osculation and the corresponding regions where
small necks occur. Above the parabola p =(20 +1)2/8, there
are no stable spherical solutions. Outside this boundary, there
are in general two solutions R, and R _, as given by Eq. (12).
These two radii are positive when o> —1 and p >0. Within
this region, kissing of unequal (+ —) spheres occurs along the
line o = 3, while equal-sphere ( + +) and (— —) kissing occurs
for 0 =p. Shading marks the regions, near these boundaries,
where stable necks of small but nonzero radius occur.

A remark is in order concerning the relative mechani-
cal energies of vesiculated and necked shapes in regions
where both exist [37]. To compare energies, it is con-
venient to return to area-volume variables, ( 4, ¥). Con-
sider a vesiculated configuration consisting of two
spheres of radii R, and R, with R;*R,, so that
V=4m(R3+R3)/3 and 4 =4m(R?+R?2). Suppose that
a small neck of radius a is allowed to open up between
spheres, so that the overall shape is given by Fig. 3. In
this process the radii R, and R, are allowed to readjust
so that 4 and V remain fixed. Equations (17)—(19) allow
calculation of the total mechanical energy as a function
of the neck radius,

1 1
E,yla)—E, y(0)=4ma I_E__Ez—
1 1 2 2
—2m | —+—5 |alna+0(a”),
R 3

(28)

which should be compared with Eq. (23). Note that the
energy required to make a small neck at fixed ( 4, V) van-
ishes with the neck radius [38]. The -condition
(1/R;+1/R,)X 1 for small stable necks reemerges from
this perspective. Mapping back to (o,p) regenerates Eq.
(25). The line of reasoning leading to Eq. (28) cannot be
carried through for the symmetric dumbbell R,=R,,
since [39] for this case the neck radius cannot be indepen-
dently adjusted at fixed 4 and V. Indeed, it is not possi-
ble to reach the line p =o away from the point p =0 =1
except by following a special trajectory in the (A4, V)
plane.

We shall find in Sec. VI that all the results derived here
variationally for the “toy”” model, Fig. 3, are, in fact, ex-
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act consequences of the Helfrich Eq. (4) for two spheres
near the vesiculation boundary. This includes the loca-
tion of the bifurcation lines [the “kissing condition,” Eq.
(1], the condition, (1/R,+1/R,)= 1, for small-neck sta-
bility, and the formulas (25)—(27) for the neck radii
through order a Ina. (We have checked these relations
for a variety of specific examples by numerical integra-
tion of the Helfrich equations.) We shall discuss in Sec.
VI the reason for this remarkable agreement. Broadly,
however, it follows from the fact that Eq. (13) correctly
captures the dominant feature of the neck shape when a
is small.

IV. PERTURBATIONS
ABOUT A SIMPLE CLOSED SHAPE

Suppose c,(s) and ¢,*(s), s €[0,s], are solutions of
Eqgs. (4) and (5) corresponding to a particular closed
shape, so that (in the notation of Sec. II)
c9(s =0)=c;°)(s =0)=c*=c*(o,p) and ¢ Vs =s;)
=c,§°’(s =s;)=c} =c}(o,p), where ¢ and ¢} are the ini-
tial and final axial curvatures. For example, in the region
of the (o,p) plane where spheres are mechanically stable,
the constant functions,

e(s)=cs)=1/R(0o,p) , 29)

solve Egs. (4) and (5), provided that R (o,p) is one of the
two special radii (12) [40], so in this case
¢t=cf=1/R(o,p) and s;=nR(o,p). We now ask,
“How is the shape modified if we start the integration
with initial curvature ¢ =c* +¢, close to but not equal to
¢*?” To approach this question quantitatively, we may
expand about the closed solution,

Cmp(8)— i) (s)=8c,, ,(s)= 21 €'cim(s) , (30)

substitute into Egs. (4) and (5), and collect powers of e.
The resulting (linear) equations must then be solved, sub-
ject to the boundary conditions that the functions c,‘,,'f},(s)
should be regular at s=0 with c,‘,,’,},(s =0)=1 and
c,(,,’:;,(s =0)=0 for n > 1, which determine the perturba-
tions uniquely [41]. Since the shapes generated by the
Euler equations are smooth except as they approach the
axis at s —s,, r —0 [42], we anticipate that the deviations
will remain small up to the neck region, where they must
diverge in order to generate the onduloid/nodoid shapes
depicted in Fig. 2.

We illustrate this program explicitly for perturbations
about the spherical Euler shapes (29). (The general case
will be discussed in Sec. VIL) In this case linearization
leads to

d*  (3—2r*/R> d __ (pR?-=2) cW(r)
dr?  r(1—r%/R%* dr 2R(1—r2/RYH |?®
=0. @31

The substitution y =r2/R? reduces Eq. (31) to the hyper-
geometric equation. Regularity at »r =0 picks the solu-
tion which is a pure hypergeometric function [43], and
the unique solution to linear order is
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8c,(r)=€F(4,B,2;y)+0(€) , (32)
where
A+B=1,
, (33)
4B =L pR=2)=2- 20 +1)- =

This form is only valid on the initial side of the sphere
belly (region I in Fig. 3); however, Eq. (32) is regular in
the variable s at the belly, and it is straightforward to
continue [44] into region II, where the solution is

8c,(r)= er'”? | F(4,B,—1/2;1—y)
g 2 [(2— A)['(2—B)
_ 8, prFQ2=4,2=B,5/%1—y)
37 T(4)T(B)
+0(e) . (34)
Note that 8c,(r) is perfectly finite at the belly of the

sphere (y =1) but diverges upon approach to the neck
(y —0).
By expanding Eq. (34) near the neck [43], we find
aR?
2

1

cp(r)= R +e€

+Bln—1%+0(1) +0(e?) (35

and, from Egq. (5),

_ dcp(r)
cm(r)=c,(r)tr o
1 aR? r )
R € 2 +BlnR o(1) [+0(e*), (36)
where
_ _ 2sin(w 4)sin(7B)
1—A)X1—B) ’
B=— 4 sin(7 A)sin(7B)
17_ b
with
Sin(vrA)sin(TrB)"—‘—%cos -721(1+4R—2pR3)1/2
(38)

(1— A)1—B)=L(pR*—2R +4) ,

from Eq. (33). Equations (35) and (36) should be a good
representation near but not too near the neck, i.e.,
€aR* <<r?<<R? so that the perturbation remains small.
Note that, for 7 in this interval, successive terms in Egs.
(35) and (36) are decreasing in magnitude. We shall need
these results in Secs. VI and VII.

V. SCALING NEAR A NARROW NECK

Solution of the shape equations (4) and (5) in the vicini-
ty of a very narrow neck of radius a is simplified by using
the scaled variables, p=r/a, P(p)=acp(r), and
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Y(p)=alc,(r)+c,(r)], in terms of which the Helfrich
equations (4) and (5) become

X {P[W(2P —V¥)—2aP +a?*]+20a*P—pa’} ,
dP_ w—2p (39)
dp p

The boundary conditions which characterize a neck of
radius a are P(1)=1 and W(1)=1—a/b(a)
=a—0a’+0(a®) (which are not independent), as out-
lined in the Appendix, Egs. (A3)-(A5). A second in-
tegration constant remains free and sets the asymmetry of
the neck, as discussed in the Appendix.

When a —0, these equations (and boundary conditions)
admit the solution W(p)=0,P(p)=1/p*. Note that
Y(1)—0 in this limit, so this behavior is generic. It is
significant that the specific parameters p and o drop out,
so the shape in the neck region is universal. W is the
mean curvature, and its vanishing means that the scaled
neck shape is a so-called minimal surface [45] in the limit
a —0. Corrections to this shape may now be computed
systematically by inserting the ansatz

Yip)= 3 a"¥,(p),

n=1
P(p)=1+ 3 a"P,(p)
P n=1

into Egs. (39). This procedure generates a sequence of
linear inhomogeneous differential equations, correspond-
ing to successive powers of a,

¥, _ T +Q,({P,,,¥ }ip)
= my W msm <nj;pl,
doplpt=1) ’ (41)
dP, 2P, V¥,
=— + , n=0,1,2,3,....
dp p P
The procedure is recursive in that the function

0,({P,,,¥,;m<n};p) involves solutions from all levels
lower than n. Because the equations are first order, all
solutions can be reduced to quadratures, and the formal
solutions are

2_ 131722 w(Y)
W=D 5 pnlg + [ray 22| )
p n=1 (y=—1)

and
Pp== 1+ 3 a" [Pay yw, | (43)
P n=1

Note that the integrals in Eq. (43) are definite, while
those in Eq. (42) are indefinite, since (as we shall find)
divergences may appear both at p—1 and at p— . The
parameters K, are constants of integration and are col-
lectively equivalent [46] to the asymmetry parameter g
(see Appendix).

Equations (42) and (43) already contain the boundary
conditions which define the neck radius. This occurs ex-
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plicitly for P(p), since the integrals are regular [47] at
p=1 and only the leading term contributes to P(1). The
situation for W(p) is more subtle: At each order [47], the
integrated term diverges at p— 1 in just such a way as to
cancel the factor (p?—1)'/? and give a finite contribution
to W(1). These finite contributions are independent of the
integration constants K, and build up order by order in a
the initial value computed in the Appendix.

It is a straightforward exercise to generate the first few
iterates in the hierarchy (40). We find

T
Wl(p)=1+K1_L/p ! , (44)
_1 1
Ky o —~—
+-2—2[pr —1—In(p+Vp*—-1)], 45)
yol
and

Vpt— K3
\yz(p):KZ__ﬂ_l___zl

. (46)

-0

2_ .
1——‘£”p—iln(p+\/p2—1)

P,(p) can be obtained from (46) by the integration (43).
It is then straightforward to evaluate W(p) and P(p) for
small a and p >>1:

W(p)=a(l+K,)+a |K,+ %K%-&—a (ln2~—l)J
+a? %K%+0 Inp
+a0 | L |+a%0 |22 |+ 0(a?) @7)
p p
and
a 1 ak, a’ |1
P(p)=?(l+K1)+-—2——2—2—lnp+——2— EK%'FO Inp
P 2
+a0 | L |+a?0(1)+0(a?) . 48)
p

VI. MATCHING
AND THE KISSING CONDITION FOR SPHERES

The small neck of Sec. IV, caused by an ‘“error” € in
the initial axial curvature, can, of course, be described as
a scaling shape in the sense of Sec. V in terms of the two
parameters a and g. In this sense, then, there must be
unique dependences a(€) and g(€). When € is small (and,
therefore, a is small) this dependence can be read off by
matching the coefficients of the leading terms of, for ex-
ample, Egs. (35) and (48) in the asymptotic region,
€aR 3 <<r?<<R?. This matching gives [48]
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lK%+a

5 alna+0(a? (49)

1 1 1
= 1+K)—

for the leading (constant) term,

Ina +0O(a) (50)

aK
eaR*=a l1+ !

for the 1/r2 term, and

_—a 1 2 aKl
eB—E -EKI-F 1+Tlna+0(a) (51)

for the coefficient [49] of Inr.

The first of these equations shows that K, depends on
the sphere radius R but is independent of € at leading or-
der. Equivalently, it may be regarded as giving the lead-
ing behavior of the asymmetry parameter (Appendix)
[46],

32
2

R

a(e)
3

2
ale)

gle)= , (52)

showing that g diverges as V'a as a—0, unless R =2, as
occurs for symmetric coexistence. Equation (50) shows
that the neck radius scales linearly with € as e—0 with a
coefficient which can be calculated from Egs. (37) and
(38) and may have either sign (depending on o and p).
Equation (51) can be shown equivalent to Eq. (50) by us-
ing the relations (37) and (38). A similar comparison of
Eq. (47) with the perturbation result for ¥ at leading or-
ders (constant and logarithmic) turns out to give redun-
dant information. Note that, in the region of the match,
the omitted terms in Egs. (47) and (48) are, indeed, small-
er than those that contribute to the matching. The dom-
inant corrections to the leading behavior are of relative
order alna. Further corrections are of order a and
higher. Higher-order terms, c,‘,,'f},(r), ¥,(p), and P,(p),
would presumably allow one to infer additional contribu-
tions to the functions a(€) and g (€).

The kissing condition (1) for spherical multiplets fol-
lows immediately from Eq. (49). Referring to Fig. 3, sup-
pose that integration from the left leads to a small neck of
radius @ —0, so 1/R=(1+K)/2. The sign of the
asymmetry parameter changes across the neck (Appen-
dix), so on the right side 1/R,=(1—K,)/2. In adding
these equations, the asymmetry parameter cancels out
and we are led to the kissing condition. As explained in
Sec. III, this condition is satisfied for spheres along the
two special lines 0 =1 and o =p. Finally, when a is small
but not zero, we keep the a Ina terms in Eq. (49) and are
led directly to Eq. (24) for the radius of the small neck,
from which Eqgs. (25)-(27) of the toy model are derived,
finally now on a firm basis.

This exact agreement with the toy-model results may
seem surprising. In order to understand its origin, it is
useful to study directly the behavior of the free energy (3)
near the kissing boundary in order to derive the a and
a lna terms in Eq. (23) on the basis of the solutions we
have now developed for the full Helfrich equations. Con-
sider a point (o,p) near one of the kissing boundaries
[Egs. (25)-(27)). We wish to calculate the free-energy
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difference between the free energies of the exact Euler
shape [described by the function c,(r)] and the corre-
sponding multiplet of coexisting spheres [cf., Eq. (23)].
This difference may be evaluated as

Ad)AB(O‘,p)———:q)[cp]—<I>0(RA(O',p))—q)O(RB(U,p))
=®[c,]—®[c,—b¢c,], (53)

where 8¢, is defined by (30) with the value of € appropri-
ate to the Euler shape at (o,p). If the perturbation &c,
were always small, then the variational property of the
Euler shape would guarantee that A® . is of order €
(i.e., of order a?), smaller than the terms in Eq. (23),
which are of order a? Ina. Thus, through this order, the
entire contribution to the exactly calculated A® ,p must
come from the neck region, where the perturbation is not
small (since c,— o at the neck for the fully vesiculated
shape). To calculate A® ,p in this region, we use the
scaling representation (40). A direct but messy calcula-
tion using Eq. (45) leads to Eq. (23), thus showing that
the toy-model results are, indeed, exact up through order
a? Ina. Furthermore, in doing the calculation, one finds
that the only terms in P (p) which contribute at this order
are the leading terms at large p, i.e., P(p)=a/R +1/p%
which are duplicated (for small @) by the toy-model an-
satz (13). Thus, near the kissing boundary, the toy-model
results are all correct because the trial function (13) cap-
tures the key part of the singular behavior near the neck.

VII. THE KISSING CONDITION FOR GENERAL
AXISYMMETRIC OSCULATING SHAPES

It is natural to ask whether the kissing condition (1) al-
ways remains valid for axisymmetric but nonspherical
shapes, as has been observed numerically in a few cases
[1,3]. The result of the preceding section suggest strongly
that this is the case, since we have found that it is only
the behavior near the narrow neck (i.e., for r << R) which
contributes to the kissing condition and the nearby scal-
ing behavior. We sketch below [50] how to extend the
matching analysis of Sec. VI to nonspherical shapes. The
upshot of this more general analysis is that the form of
the a dependence is unchanged. The kissing condition
remains valid, where R, and R, now refer to the local ra-
dii of curvature on the two sides of the (narrow) neck.
Equation (24) for the scaling of the neck radius continues
to hold, only with a coefficient which is no longer
(20 —p).

The key point is the generalization of the perturbation
analysis [see Eq. (30) and what follows] when the closed
shape described by c(O},(r) is not simply spherical, as in
Eq. (29). In place of Eq. (31), linearization now leads to
an equation of the form

2
+Q(r)i

(—1;-_2 r dr_T(r)

o V(r)=0, (54)

where the coefficients Q (r) and T'(r) depend on the func-
tions ¢, (r) and have the following 1mportant properties.
(a) They depend only on the variable 72 [51].
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(b) They go to constant values as r —0, so Eq. (54) has
a singular point at » =0.

(c) 9(0)=3.
Specifically, a short calculation shows that, near » =0,
Q(r)=Qy+Q,r*+ -+ - =3+r2/R*+0(r* (55)
and
_ 2 _1 4 2
T(rN=Ty+T,r-+ --- =5 (20+1)—E +0(r?),
(56)

where 1/R is henceforth the local curvature c¢”=c\”’
evaluated at the axis. A simple analysis [52] close to the
singularity shows that the two independent solutions of
Eq. (54) have the forms

T
fUN=1+ 2400+ (57)

which is regular and describes a perturbation which
makes a (small) change in the initial (axial) curvature, and

T
—O+—1—+O(r2)

5 R? Inr ,

fom=Lpn+oun+ -1+
r

(58)

which is singular and describes a (small) neck. Now, this
is precisely the form of Eq. (35), and one verifies immedi-
ately that, for spheres, B/aR? agrees with the coefficient
y=T,/2+1/R? of the logarithm in Eq. (58). Note that,
just as for spheres, the perturbative form (58) is valid far
from the neck (» >>a), so that perturbation theory still
holds, but still near the axis (» <<R), so that neglect of
higher powers of r? near the singular point remains
justified [53].

At this point the analysis of Sec. VI can be repeated:
The general perturbative solution has leading singular
behavior [54]

1 1
cp(r)—i-i-C 7+7/1nr R (59)

where C is an unknown integration constant. This must
be matched to the scaling form (48). Equations (49)—(51)
reemerge, only with eaR? now replaced by the integra-
tion constant C. The upshot is that the kissing condition
(1) is satisfied with respect to the local axial radii of cur-
vature at the osculation point, while near but not at the
kissing boundary the radius of the neck is given by

IR I F
2 TR, 1’— S| =1 te
X(—alna)+O0(a), (60)

where R on the right is either one of the two coexisting
axial radii of curvature, R; and R,. This expression gen-
eralizes Eq. (24) to nonspherical shapes.

What forms do necks take for nonaxisymemtric
shapes? When two nearby buds are produced from the
same parent vesicle, do the necks attract or repel? What
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is the dynamics of bud formation? These and many other
related questions remain open.
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APPENDIX: BEHAVIOR OF EULER SHAPES
NEAR NECK AND BELLY POINTS

Near extremal points of the radius, the analyticity of
the Euler shapes may be expressed by writing

t’=|r(s)—al=a,s*+as’+ -+, (A1)

where r(s) is the radius from the symmetry axis, a is the
extremal radius, t=+V'|r —a/|, and the arc length s is
measured from the extremal point. Since the left side of
Eq. (A1) depends only on t2, inversion expresses s(r) in
the form

s(r)=xb t+b,t*tb,t3+b,tt+ - - - | (A2)

where the upper (lower) sign refers to the positive, near-
side (negative, far-side) branch, i.e., analyticity requires
that all odd-power terms change sign across the ex-
tremum. It is then a consequence of Egs. (6)—(9) that the
same is true of the curvatures c,,(r) and c,(r). We have
made use of this in deriving the continuation (34).

Coefficients in expansions like (A1) and (A2) are, of
course, constrained by the shape equations in such a way
that each neck (or belly) is characterized by two parame-
ters, corresponding to the integration constants of the
two first-order equations (4) and (5). One of these param-
eters is the extremal radius. We illustrate the structure in
connection with the behavior of the curvatures near a
neck of radius a (the corresponding belly solution differs
by a few sign changes):

= 1 1{1 1 g
= th=——— =4 — |24+ 2 - (A3
() nzz'op" a ala b a (A3)
and
cp(r)= 3 m,,t”=—l+-3—gt+ SRR (A4)
n=0 b 2

The initial value of c,, at the neck is fixed by the singular
structure of Eq. (4),

cmla)=myla)=————

b(a)
2

+(20—ap)

1 172
=—||=-1
a

(A5)

The parameter g is not fixed by the equations and may be
regarded as the second integration constant. The remain-
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ing coefficients beyond those shown explicitly in Egs.
(A3) and (A4) are functions of the two integration con-
stants a and g. In particular, both p,(a,g) and m,(a,g)
depend polynomially on the parameter g. For even n, the
polynomial is even. For odd n the polynomial is odd, so
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odd coefficients vanish at g =0. When g =0, the neck is
symmetric. When g#0, the neck is asymmetric and the
sign of g changes from one side of the neck to the other in
accordance with the analyticity property. We shall refer
to g as the asymmetry parameter.
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FIG. 5. The (o,p) plane, showing the vesiculation boundaries
for two-sphere osculation and the corresponding regions where
small necks occur. Above the parabola p =(20+1)*/8, there
are no stable spherical solutions. Outside this boundary, there
are in general two solutions R, and R _, as given by Eq. (12).

These two radii are positive when o > —% and p >0. Within

this region, kissing of unequal (+ —) spheres occurs along the
line o= 3, while equal-sphere (+ +) and (— —) kissing occurs
for c=p. Shading marks the regions, near these boundaries,
where stable necks of small but nonzero radius occur.



